Welcome To
UAV-HiRAP!
This is an open-source, web-based platform provides services for UAV flight route design and image analysis
转到应用页
To App Page

Services

主要包括:无人机航线规划、图像分析、中国沙地基础地理信息数据库和长期定位观测样地720度全景.

route_design

Route Design

给定样地顶点坐标和无人机飞行参数设置,生成满足拼图要求的最佳航线规划,并支持导出为litchi 飞控配置文件。

route_design

Image Analysis

基于决策树分类算法,通过提交满足要求的训练集,实现无人机影像像素的自动分类。

route_design

China Dryland Database

提供中国沙地基础地理信息数据库服务。

route_design

Site Panorama View

长期定位观测样地(内蒙古浑善达克沙地)720度全景图浏览功能。

News

  • publish

    2024.04

    课题组赴章古台樟子松人工林样地进行四月设备维修及数据采集

    2024年4月9日-10日,课题组博士研究生杨凯捷前往辽宁省章古台樟子松人工林样地,进行设备维修及数据采集。确认电路故障并进行维修,保证电路正常运行并对通量观测设备传感器进行清洁。

  • publish

    2024.04

    课题组硕士研究生蔡依霏在《Science》NextGen Voices专栏上发表研究感想

    2024年4月5日,课题组硕士研究生蔡依霏在《Science》NextGen Voices专栏上发表研究感想。本次NextGen Voices专栏聚焦“Benefits of research success”,邀请青年科研工作者思考并分享“想象实现了研究目标,将会对研究对象有什么影响”。蔡依霏结合自身学习科研经历,提出对于荒漠化潜在发生地理分布的研究,可以为政府和相关机构提供荒漠化防治措施,有利于人类进一步对生态系统进行保护和修复,实现可持续发现目标。

  • publish

    2024.04

    中国林科院“三北”专项项目启动暨实施方案论证会在京召开

    2024年4月3日,中国林科院“三北”专项“科尔沁、浑善达克沙地近自然修复关键技术研发与集成应用”、“ 黄河‘几字弯’岸线控沙、光伏治沙关键技术集成与研发”、“河西走廊-塔克拉玛干沙漠边缘风沙口流沙治理技术研发与集成示范”项目启动暨实施方案论证会在北京召开。会上,项目负责人王锋研究员汇报了所承担项目的实施方案。与会专家一致同意通过项目实施方案,并从实施方案优化、应用示范落地与“三北”六期工程相结合等方面提出了建议。



Our Team

UAV-HiRAP是中国林业科学研究院荒漠化研究所的实验室。 实验室应用当前最新技术例如机器学习、无人机等,致力于发展观测、监测、评估和管理干旱区生态系统的新方法。 实验室提供实习生、硕士生、博士生和博士后位置。欢迎来自海内外学者的跨学科合作!
地址:北京市海淀区青龙桥街道槐树居路十号荒漠化研究所;E-mail:wangfeng@caf.ac.cn

UAV-HiRAP lab is a research group affiliated with Institute of Desertification Studies, Chinese Academy of Forestry. It is dedicated to develop the new method to observe, monitor, assess, and manage the drylands ecosystem by applying the state of the art technology such as artificial intelligence(AI), unmanned aerial vehicles(UAV), satellite and model. We offer Internship, Masters, Ph.D, and Postdoc positions and welcome research collaborations across disciplines. Address: No.10,Huaishu Road, Haidian District, Beijing; E-mail: wangfeng@caf.ac.cn

Publications

Papers

    2024

  1. Qian Ye et al.,Research beneficiaries speak.Science384,26-28(2024). DOI: 10.1126 /science.adp2180
  2. 2023

  3. 李晓雅, 田昕, 段涛, 曹晓明, 杨凯捷, 卢琦, 王锋*. 2023. 融合无人机和卫星影像的温带疏林草原木本和草本植物覆盖度遥感估算. 遥感学报, 27(9): 2139–2152.
  4. 2022

  5. Cheng, X., Hu, M., Zhou, Y., Wang, F., Liu, L., Wang, Y., Huang, H*., & Zhang, J*. 2022. The divergence of micrometeorology sensitivity leads to changes in GPP/SIF between cork oak and poplar. Agricultural and Forest Meteorology, 326, 109189.
  6. Shaomin Shi, Weiwei Cong*, Sen Lu, Tianhong Zhao, Feng Wang*, Qi Lu,Can SIF and NPQ be used in the photosynthesis rate simulation of plants subjected to drought? Environmental and Experimental Botany, Volume 203, 2022, 105067, ISSN 0098-8472.
  7. Cong W., Li X., Pan X., Liu X., Lu Q., Wang F*. 2022. A new scientific framework of dryland ecological quality assessment based on 1OAO principle. Ecological Indicators, 136, 108595.
  8. Cong W., Yang K., Wang F*. 2022. Canopy Solar-Induced Chlorophyll Fluorescence and Its Link to Transpiration in a Temperate Evergreen Needleleaf Forest during the Fall Transition. Forests 2022, 13, 74.
  9. 2021

  10. Zhang, Y., Zhang, Q., Liu, L., Zhang, Y., Wang, S., Ju, W., et al. 2021. ChinaSpec: A network for long-term ground-based measurements of solar- induced fluorescence in China. Journal of Geophysical Research: Biogeosciences, 126, e2020JG006042.
  11. Cheng, X.; Zhou, Y.; Hu, M.; Wang, F.; Huang, H.; Zhang, J. 2021. The Links between Canopy Solar-Induced Chlorophyll Fluorescence and Gross Primary Production Responses to Meteorological Factors in the Growing Season in Deciduous Broadleaf Forest. Remote Sensing.13(12), 12.
  12. Wu Y., Zhang J., Wang F., Song Y., Ji J., 2021. Simulations of spatial patterns and species distributions in sandy land using unmanned aerial vehicle images. Journal of Arid Environments 186: 104410.
  13. 2020

  14. Wang F*, Pan X, Gerlein‐Safdi C, Cao X, Wang S, Gu L, Wang D, & Lu Q*. 2020. Vegetation restoration in Northern China: A contrasted picture. Land Degradation & Development, 31(6), 669–676.
  15. Gerlein-Safdi C, Keppel-Aleks G, Wang F, Frolking S, Mauzerall D. 2020. Satellite Monitoring of Natural Reforestation Efforts in China’s Drylands. One Earth, 2(1), 98–108.
  16. Kattge J, … Wang F, …, Wirth C. 2020. TRY plant trait database – enhanced coverage and open access. Global Change Biology, 26(1), 119–188.
  17. 2019

  18. Wang H, Han D, Mu Y, Jiang L, Yao X, Bai Y, Lu Q, Wang F*. 2019. Landscape-level vegetation classification and fractional woody and herbaceous vegetation cover estimation over the dryland ecosystems by unmanned aerial vehicle platform. Agricultural and Forest Meteorology, 278: 107665.
  19. 王锋*, 卢琦. 2019. 沙地樟子松散生单木的天然更新幼苗空间分布模型. 林业科学, 55(8):1-8.
  20. 姚雪玲, 姜丽娜, 李龙, 王锋, 吴波, 郭秀江. 2019. 浑善达克沙地6种灌木生物量模拟. 生态学报, 39(3):905-912.
  21. 吴隐, 韩东, 姚雪玲, 张静, 王锋*. 2019. 基于无人机高分辨率航空影像的榆树疏林空间分布格局及其地形效应. 热带地理, 39(4):531-537.
  22. Wu R, Cong W, Li Y, Li S, Wang D, Jia Z*, Wang F*. 2019. The Scientific Conceptual Framework for Ecological Quality of the Dryland Ecosystem: Concepts, Indicators, Monitoring and Assessment. Journal of Resources and Ecology, 10(2): 196-201.
  23. Wang S, Wang J, Zhang L, Xiao Z, Wang F, Sun N, Li D, Chen B, Chen J, Li Y, Wang X, Wang M. 2019. A National Key R&D Program: Technologies and and Guidelines for Monitoring Ecological Quality of terrestrial ecosystems in China. Journal of Resources and Ecology, 10(2): 105-111.
  24. 2018 2017

  25. 韩东, 王浩舟, 郑邦友, 王锋*. 2018. 基于无人机和决策树算法的榆树疏林草原植被类型划分和覆盖度生长季动态估计. 生态学报. 38(18): 6655⁃6663.
  26. Mu Y, Wang F*, Zheng B, Guo W, Feng Y*. 2018. A rapid image-based method to determine the morphological characteristics of gravels on desert pavement. Geomorphology. 304, 89–98.
  27. 穆悦, 冯益明, 高翔, 韩东, 吴隐, 张谱. 2018. 基于无人机图像的戈壁表面砾石特征变化研究. 林业科学研究, 31(2):55-62.
  28. Feng Wang*. 2017. Artificial intelligence in research: UAV and artificial intelligence. Science. 357: 28-29.

Conference

  1. 王锋. 榆树疏林草原结构-功能“星-空-地”一体化监测. 第七届青年地学论坛. 脆弱生态系统保护与修复分会场. 中国贵阳. 2021年7月9-11日.
  2. 杨斌. 基于卷积神经网络的榆树疏林单木检测和分割研究. 第七届青年地学论坛. 脆弱生态系统保护与修复分会场. 中国贵阳. 2021年7月9-11日.
  3. 杨凯捷. 季节变更对樟子松日光诱导叶绿素荧光与冠层光合作用关联的影响. 第七届青年地学论坛. 脆弱生态系统保护与修复分会场. 中国贵阳. 2021年7月9-11日.
  4. 李晓雅. 温带疏林草原的分布与制图研究. 第七届青年地学论坛. 脆弱生态系统保护与修复分会场. 中国贵阳. 2021年7月9-11日.
  5. 王锋. 荒漠-草原生态系统“星-空-地”一体化监测. 第27个世界防治荒漠化与干旱日纪念活动暨荒漠化防治高质量发展学术论坛——青年论坛. 中国西安. 2021年6月15-17日
  6. 李晓雅. 从无人机到卫星——基于机器学习的温带疏林草原木本和草本植被盖度估算. 第19届中国生态学大会生态遥感分会场. 2020年11月21-23日.
  7. 王锋. 荒漠-草原大样地生态监测与技术进展. 2020年度荒漠-草原观测研究野外站联盟工作会议暨学术研讨会. 中国乌海. 2020年10月15-18日.
  8. Feng Wang. Sun-induced chlorophyll fluorescence of four temperate tree species under short-term heat events. AGU 2019. San Francisco, CA, USA. 9-13 December, 2019.
  9. 王锋. 基于无人机和机器学习的干旱区植被检测工具及在生态学野外取样设计的启示. 第六届青年地学论坛. 2019年10月12-16日.
  10. 韩东. 高强度放牧对温带半干旱区榆树疏林木本植物的破坏更明显. 第六届青年地学论坛. 2019年10月12-16日.
  11. 姬婕. 基于无人机平台的浑善达克沙地榆树疏林草原植被生物量估算. 第六届青年地学论坛. 2019年10月12-16日.
  12. 王锋. Sun-induced chlorophyll fluorescence detects the response of tree species to extreme heat events. EGU General Assembly 2019. Vienna, Austria, 12-17 April.
  13. 王锋. UAV-HiRAP: 基于无人机平台的植被分类和盖度估计工具及在生态学野外取样设计的启示. 第二届无人机生态/地理应用研讨会. 中国广州,2018年12月26-28日.
  14. 王锋. 植被与荒漠化。中国林业科学研究院“林科讲坛”,2018年12月17日.
  15. 王锋. UAV-HiRAP: 基于无人机平台的旱地生态系统植被分类和盖度估计工具.第一届植被遥感学术研讨会.中国南京,2018年10月26-28日.
  16. 韩东. 基于无人机和机器学习算法的榆树疏林草原植被分类和覆盖度动态估计. 第17届中国生态学大会,生态遥感与应用分会. 中国南京,2018年5月4-6日.
  17. 王锋. 耦合无人机和机器学习算法的沙地植被分类研究. 全国自然地理学大会. 中国南京, 2017年11月20-22日.
  18. Wang Haozhou. 2017. UAV-HiRAP: A novel method to improve landscape-level vegetation classification and coverage fraction estimation with unmanned aerial vehicle platform. The 12th International Congress of Ecological (INTECOL). Beijing, China, August 21-25, 2017.
  19. Mu Yue. 2016. The gravel coverage and size of Gobi desert analyzed by a rapid image-based method. IUFRO Regional Congress for Asia and Oceania 2016. Beijing, China, October 24-27, 2016.(海报)
  20. Wu Yin. 2016. A novel spatially explicit model for sparse forest pattern based on digital terrain data. IUFRO Regional Congress for Asia and Oceania. Beijing, China, October 24-27, 2016. (海报)

Software copyrights

  1. 无人机高精度影像分析平台[简称: UAV-HiRAP] v3.0 2019. 软著登字第2019SR0286422
  2. 中国沙地基础地理信息数据平台[简称:GIP-DLC] v2.0 2018. 软著登字第2018SR921265
  3. 无人机高精度影像分析平台[简称: UAV-HiRAP] v2.0 2017. 软著登字第2017SR558256
  4. 无人机高精度影像分析平台[简称: UAV-HPIAP] v1.0 2016. 软著登字第2016SR198498
  5. 中国沙地基础地理信息web系统. 2016. 软著登字第2016SR036010

Invention Patents

  1. 一种基于无人机的景观尺度植被覆盖度的计算方法及系统:2019.中国,20160913357.8